P4-467 LUMIPULSE® G TOTAL TAU: KEY PERFORMANCES OF A FULLY AUTOMATED CHEMILUMINESCENT IMMUNOASSAY

Manu Vandijck1, Martine Dauwe1, Els Huyck1, Nathalie Le Bastard1, John Lawson3, Christopher Traynham2, Zivjena Vucetic1, Johan Gobom4, Kaj Blennow4, Geert Jannes1, Vesna Kostanjvecki1, 1Fujirebio Europe N.V., Gent, Belgium; 2Fujirebio US Inc, Malvern, PA, USA; 3Fujirebio Diagnostics Inc, Malvern, PA, USA; 4Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Malmö, Sweden. Contact e-mail: manu.vandijck@fujirebio.com

Background: Today levels of β-amyloid(1-42) peptide and total Tau in cerebrospinal fluid (CSF) are well-accepted biomarkers representing Alzheimer’s disease (AD) from the earliest stages on. Widespread use of these biomarkers in AD diagnosis requires reliable, highly precise, and accurate measurements. Analytical requirements and performance of CSF samples on the novel Lumipulse G Total Tau assay (CE-marking ongoing), a fully automated chemiluminescent enzyme immunoassay were verified. Methods: The LUMIPULSE G instruments use single analyte, ready-to-use immunoreaction cartridges with a throughput of 60 and 120 tests/hour for the G600II and the G1200 instrument, respectively. Sequential immunoreaction steps are carried out while the cartridge is transported through the system. Each cartridge generates quantitative results within approximately 30 minutes and multiple assays can be easily combined in the system. The Lumipulse G Total Tau assay has been developed using established monoclonal antibodies. The analytical assay performance was characterized according to CLSI guidelines. Quantitative determination of total Tau levels on CSF samples from patients visiting a memory clinic was performed at an external lab and used for a measurement comparison versus INNOTEST® hTau Ag. Results: Using a panel of CSF and control samples, assay variability was determined and the obtained coefficient of variation seen for the different variability components show a high level of precision: a clear result from the use of a standardized and automated assay platform. Low concentrated CSF samples were used to demonstrate the good analytical sensitivity (LoD and LoQ) of the assay. Linearity was shown between-vial homogeneity and long-term stability (one year) both were fully characterised. They were found to have suitable behaviour, stability, and commutability were assessed and found to be suitable for the purpose. The value-assignment resulted in acceptable uncertainties. The reference materials are expected to be released in the near future. The next step is to outline the concepts on the use of the CRMs for calibration of the routine assays.

Conclusions: Automation, the mono test cartridge principle, short throughput times, and instrument flexibility are key attributes of the LUMIPULSE G instrument series making it the ideal platform to fulfill today’s needs for rapid and accurate quantification of CSF biomarkers in both low and high throughput clinical laboratories. The novel Lumipulse G Total Tau assay shows good sensitivity and precision, and correlates well with the established INNOTEST assay.

P4-468 PROGRESS ON THE DEVELOPMENT OF CERTIFIED REFERENCE MATERIALS FOR Aβ1-42

Sébastien Boulo1, Julia Kuhlmann1, Andreas Leinenbach2, Tobias Bittner3, Leentje Demeyer3, Erik Stoops1, Hugo Marcel Vanderstichele4, Josef Pannee5, Ulf Andreasson3, Henrik Zetterberg3, Pietro Lewczak6, Guy Aucillier7, Mary Lame8, Erin Chambers9, Magdalena Korecka10, Leslie M. Shaw10, Moucun Yuan10, Rand Jenkins10, Hendrik Emons10, Heinz Schimmel1, Ingrid Zegers1, Kaj Blennow4, 1European Commission, Joint Research Centre, Geel, Belgium; 2Roche Diagnostics GmbH, Penzberg, Germany; 3Adx NeuroSciences, Gent, Belgium; 4Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 5Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Malmö, Sweden; 6Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Malmö, Sweden; 7Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; 8Waters Corporation, Milford, MA, USA; 9University of Pennsylvania, Philadelphia, PA, USA; 10PPD Laboratories, Richmond, VA, USA. Contact e-mail: sebastien.boulo@ec.europa.eu

Background: Early diagnosis and treatment of Alzheimer’s Disease (AD) remain challenging. The use of cerebrospinal fluid (CSF) biomarkers could contribute to an early diagnosis, however there are still large variations among results from different assays for CSF biomarkers. This is partly due to a lack of standardization of those assays. It highlights the need for a common Certified Reference Material (CRM) for each clinically relevant AD biomarker.

Methods: Three candidate CRMs were prepared, with low, medium and high Aβ1-42 concentrations by pooling CSF samples obtained from a large number of donors. Homogeneity and short- and long-term stability were assessed by measurements with two immunoassay formats (Roche Elecsys and Euroimmun ELISA). A commutability study was performed using the major routine immunoassays. Value-assignment was performed using liquid-chromatography mass-spectrometry (LC-MS). A recombinant peptide calibrant (source: rPeptide) was used for the calibration of the reference methods applied for the value-assignment of the candidate CRMs.

Results: The candidate CRMs were fully characterised. They were found to have suitable between-vial homogeneity and long-term stability (one year) for both Aβ1-42 as well as Aβ1-40. The materials are commutable to patient samples for the major immunoassays for Aβ1-42 and the LC-MS reference methods. The characterisation using reference methods resulted in uncertainties that were acceptable. Three CRMs for Aβ1-42 have been fully characterised. Homogeneity, stability, and commutability were assessed and found to be suitable for the purpose. The value-assignment resulted in acceptable uncertainties. The reference materials are expected to be released in the near future. The next step is to outline the concepts on the use of the CRMs for calibration of the routine assays.

Conclusions: Three CRMs for Aβ1-42 have been fully characterised. Homogeneity, stability, and commutability were assessed and found to be suitable for the purpose. The value-assignment resulted in acceptable uncertainties. The reference materials are expected to be released in the near future. The next step is to outline the concepts on the use of the CRMs for calibration of the routine assays.

P4-469 USE FOR CALIBRATION OF CERTIFIED REFERENCE MATERIALS FOR Aβ1-42

Sébastien Boulo1, Julia Kuhlmann1, Tobias Bittner1, Leentje Demeyer3, Erik Stoops1, Hugo Marcel Vanderstichele4, Eugene Vanmechelen1, Josef Pannee1, Erik Portelius5, Ulf Andreasson3, Henrik Zetterberg1, Leslie M. Shaw10, Heinz Schimmel1, Ingrid Zegers1, Kaj Blennow4, 1European Commission, Joint Research Centre, Geel, Belgium; 2Roche Diagnostics GmbH, Penzberg, Germany; 3Adx NeuroSciences, Gent, Belgium; 4Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 5Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Malmö, Sweden; 6Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Malmö, Sweden; 7Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; 8Waters Corporation, Milford, MA, USA; 9University of Pennsylvania, Philadelphia, PA, USA; 10PPD Laboratories, Richmond, VA, USA. Contact e-mail: sebastien.boulo@ec.europa.eu